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SUMMARY

We introduce a novel time-series method for estimating the death rate of an emerging, infectious

disease with censored aggregate data. Our approach is based on a Generalized Linear Mixed Model

for the (daily) number of deaths in terms of the current and past (daily) number of newly confirmed

cases. We illustrate the new method with data from the SARS outbreak in Hong Kong during 2003;

the new method outperforms the simple WHO estimator of dividing the number of deaths by the

number of confirmed cases, being less biased and converging more quickly to the death rate computed

from the complete data.
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1. INTRODUCTION

The world is constantly under threat of emerging or re-emerging infectious diseases, e.g. the

SARS outbreak in 2003 and the pending influenza pandemic. An important epidemiological

parameter of a new infectious disease is its death rate (also known as the case fatality rate),

which may be difficult to estimate in a timely fashion and accurately, based on incomplete

data from the initial course of the disease. Yet, clearly a timely and accurate estimate of the

death rate as an emerging infectious disease is evolving is of urgent importance as it is of great

concern to the general public and pivotal for formulating appropriate public health measures.

Here, we develop a novel time-series approach to estimating the death rate of an emerging,

infectious disease. Our new approach circumvents the problem that the outcomes of many

confirmed cases are censored, i.e. not known at the end of the study period. We do this by

first expressing the conditional mean daily (or any basic sampling time unit) number of deaths

in terms of a linear function of current and past daily number of (newly) confirmed cases.

The coefficients of the daily number of confirmed cases and its lags constitute the (defective)

probability mass function of time to death due to the disease. These coefficients are assumed

to be smooth in that their second differences are small. The smoothness constraints can be

incorporated by formulating a Generalized Linear Mixed Model (GLMM) for the daily number

of deaths, which can be estimated by various methods, e.g. maximum likelihood estimation. An

advantage of the time-series method is that it only requires aggregate data and not individual

data as are necessary in epidemiological analysis via survival analysis; aggregate data are often

more readily available.

In section 2, we formulate the GLMM for estimating the death rate of an infectious disease.

Then, we illustrate our approach using the Hong Kong SARS data in section 3. We briefly

conclude in section 4.

2. MODEL FORMULATION

We assume the following simple probabilistic model. Let pn be the probability that a confirmed

case ends up in a death on the nth day after the confirmation of the disease. Similarly, let qn

be the corresponding probability of being recovered and discharged from the hospital on the
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nth day. Then p =
∑

∞

n=0
pn is the death rate of the disease, and q = 1 − p =

∑
∞

n=0
qn is the

recovery rate. All cases are assumed to be independent of each other and have identical death

rate and probability distribution of time to death (discharge).

In order to better appreciate the new time series approach, we first consider two fairly

standard estimation methods. In the first approach, let K be the number of cases whose

outcomes are known at the end of the study period, out of which there are D deaths. One

may then proceed by assuming that conditional on K, D has a binomial distribution with

probability p and number of trials K so that the death rate can be estimated by D/K, i.e.

number of deaths over the sum of the number of deaths and that of discharges. Unfortunately,

this approach is generally flawed because the conditional probability of death among the cases

of known outcomes need not equal the unconditional probability of death, owing to possible

“selection” bias. For example, this is the case if the time to discharge differs from the time

to death on average, resulting in differential probabilities of censoring for the two types of

outcome over a finite study period. The selection bias, however, vanishes if the study period

is sufficiently long. A second approach circumvents the selection bias by adopting a cohort

approach. In this approach, cases from the same day constitute a cohort. A cohort is complete

if all of its cases have known outcome at the end of the study period. The binomial analysis is

then restricted to the sample consisting of all cases from complete cohorts. The cohort approach

does suffer from two problems, namely it requires detailed data that are often inaccessible and

more importantly it is inefficient as it discards substantial amount of data.

We now explain the time series approach. Let Ct be the number of confirmed cases on the

tth day, the corresponding number of deaths by Dt and that of recovered and discharged cases

by Rt. Each death on day t must come from an earlier confirmed case. The probability that

it is from day t − n equals pn and there are Ct−n cases on that day, so the conditional mean

of Dt given Ft = {Ct−j, j = 0, 1, 2, 3, ...} equals
∑

∞

j=0
pjCt−j . For finite data, the infinite

sum becomes a finite sum given by
∑ℓ2

j=ℓ1
pjCt−j , where ℓ1, ℓ2 ≥ 0 are known lower and

upper bounds of the time to death. Since Dt are counts, their conditional distributions may

be specified as, e.g. Poisson or negative binomial. Thus, it is a Generalized Linear Model [8]
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with an identity link function and the particular conditional mean function:

E(Dt|Ft) =

ℓ2∑

j=ℓ1

pjCt−j , (1)

where Ct = 0 for t < 0. Theoretically, Dt are serially dependent because they come from the

earlier confirmed cases. Serial correlation among the Dt may be accounted for by including a

latent process on the right side of (1) that may be specified as some Auto-Regressive Moving-

Average (ARMA) process. The more general model then specifies that, conditional upon the

counts of confirmed cases and the latent process ǫ, Dt are independent and have the conditional

mean given by

µt =

ℓ2∑

j=ℓ1

pjCt−j + ǫt. (2)

For disease data with low death rate, serial dependence may be negligible, which justifies the

omission of the latent process from the model. A prudent approach consists of fitting a model

without the latent process and then checking whether the residuals are roughly white noise, i.e.

serially uncorrelated. In the case of significant residual serial correlation, an ARMA process can

be specified for the latent process based on the residual serial dependence structure. Needless

to say, other covariates may be incorporated in the model if needed, as will be demonstrated

in the application below.

If the conditional response distribution is normal, the preceding model is simply the transfer

function model, also known as the distributed lag model [4, 1]. The lags ℓ1 and ℓ2 are chosen to

sufficiently span the range of non-zero pj’s. Often, a natural choice for ℓ1 is 0. The coefficients

pj are expected to vary smoothly with the lag j. Indeed, the incorporation of this smoothness

assumption in the estimation is essential because the model contains a large number of lags of

Ct that can easily introduce multicollinearity. Hence, an unconstrained fit will generally yield

very erratic estimates of the p’s. The smoothness assumption may be effected by postulating

some parsimonious parametric class of models, e.g. rational transfer function model [4] or

polynomial model [1]. In practice, the functional form of the p’s is seldom known, and a

nonparametric approach may be more appealing as it lets the data tell us the functional form

of the p’s. Here, we adopt the nonparametric approach in that the second differences of the p’s

be independent and identically normally distributed with zero mean and standard deviation

ζ; see [9]. The model may be estimated via a number of approaches, e.g. penalized likelihood
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[7], Bayesian approach [9], or mixed-effect model [11, 12]. With suitable tuning parameters,

estimators from these approaches are identical. The mixed-effect formulation is perhaps most

amenable to statistical analysis, given the availability of standard software such as the nlme

library of R [3, 12].

Some details of the mixed-effect approach follow; see also [12]. Define the m-dimensional

parameter vector as θ = (pℓ1 , · · · , pℓ2)
T . Let µ = (µ1, µ2, · · · , µn)T be the vector of the

conditional mean responses. Let R be a constant (m − 2) × (ℓ2 − ℓ1 + 1) matrix such that

Rθ equals (pℓ1 − 2pℓ1+1 + pℓ1+2, · · · , pℓ2−2 − 2pℓ2−1 + pℓ2)
T , the second differences of the p’s.

The constraint that the second differences of p’s be small is then equivalent to requiring that

the square-norm of Rθ be small. Sometimes, the pj ’s may be expected to taper off when j

approaches one or both end-points of the interval [ℓ1, ℓ2]. As pj = 0 for j outside the range

[ℓ1, ℓ2], the tapering-off of the p’s as j → ℓ1 is equivalent to requiring pj − 2pj+1 + pj+2 to

be small for j = ℓ1 − 2, ℓ1 − 1, which can be effected by augmenting R by the two rows

(1, 0, · · · , 0) and (−2, 1, 0, · · · , 0) and requiring θT RT Rθ to be small. (Tapering-off at the

other end-point or at both end-points can be similarly incorporated in the estimation.) The

smoothness constraints can be implemented by requiring that θ has a multivariate Normal

distribution of zero mean and precision matrix equal to λRT R, the inverse of which, if it

exists, is the covariance matrix. The smoothness parameter λ > 0 controls the smoothness of

θ, and is estimated from the data.

Consider the simple case with ǫ being absent, and let X be the design matrix. Then

µ = Xθ, (3)

where θ is multivariate normal with zero mean and precision matrix S = λRT R. Often, S

is singular, e.g. for the unaugmented R, Sθ = 0 for any linear θ, i.e. pj = β0 + β1j, for

ℓ1 ≤ j ≤ ℓ2. On the other hand, it can be checked that imposing the smoothness constraint on

the p’s across either end of the interval [ℓ1, ℓ2] implies that S is invertible. In the general case,

consider a singular value decomposition of R = UDV T where U and V are orthogonal matrices

and D is a diagonal matrix whose diagonal elements are in descending magnitude. Let D be

decomposed into two block diagonal matrices DR and DF , where the diagonal elements of DR

are non-zero and DF is a zero matrix. Similarly partition V = [VR, VF ]. Define θR = DRV T
R θ

and θF = V T
F θ. Similarly define XR = XVRD−1

R and XF = XVF . Clearly S = λV D2V T . Then
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(3) becomes

µ = XF θF + XRθR, (4)

where θF is the fixed-effect parameters and θR consists of iid random effects that are centered

normal random variables of variance 1/λ. Thus, the response vector D = (D1, D2, · · · , Dn)T

follows a Generalized Linear Mixed Model (GLMM), namely, D is conditionally Poisson

distributed with mean vector given by (4). As remarked earlier, serial auto-correlation may be

accounted for by further adding an ARMA process to the right side of (4). Maximum likelihood

estimation of the GLMM can be done via the glmmPQL [10, 5] function in R. In the data

analysis reported in the next section, maximum likelihood estimation is done via the gamm

function (with a new smooth class of functions called “tfb”; available from the authors) of

the library mgcv [12] of R, which uses the glmmPQL function to do approximate maximum

likelihood estimation.

3. EMPIRICAL ANALYSIS OF THE DEATH RATE OF SARS IN HONG KONG

According to the World Health Organization (WHO), during the recent outbreak of severe

acute respiratory syndrome (SARS) in 2003, a total of 8,098 people were sick with SARS.

Of these, 774 died, resulting in a global death rate of approximately 9.56%. The disease

originated in Southern China, reached Hong Kong in late February and from there spread

to many countries. During the first few months when SARS struck Hong Kong, there was a

controversy [2] on how best to estimate the death rate of SARS, which is of paramount public

health concern. The death rate ranged from 2% in March, 2003 to 7.2% in May, 2003, based on

the WHO formula of estimating the death rate by the ratio of the number of known deaths to

the total number of confirmed cases. However, this formula is likely to underestimate the true

death rate because the outcomes of many cases were still unknown at the time these figures

were computed. The death rate of SARS may depend on a number of factors [6], e.g. age,

sex, region, and time. The covariate region is a proxy for the medical treatment policy and

the dominant strain of SARS while time is a proxy for the mutation effects of the primary

coronavirus causing SARS. Here, we shall not address the dependence of the death rate on

these specific factors. Instead, we focus on the problem of estimating the overall death rate of
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SARS in Hong Kong. Reliable daily SARS data are available over the study period that begins

on March, 11, 2003, designated as day 1, and ends at day 116 when the last SARS death case

occurred in Hong Kong. During the study period, Hong Kong has accounted for about 22% of

all the globally confirmed SARS cases.

There are altogether 1755 confirmed SARS cases in Hong Kong, out of which 299 cases

resulted in death with the last death on day 116. This represents a death rate of 17.0% versus

the much lower 9.6% overall death rate of SARS worldwide. Initially, we fitted the model

with the conditional mean death on the t-th day as µt = β +
∑ℓ2

j=ℓ1
pjCt−j where ℓ1 = 0

and ℓ2 = 50 (the upper bound may be determined by some information criteria such as AIC

and BIC; results reported below are robust to the use of other larger upper bounds), with

the constraint that pj tapers off when j approaches 50. Thus, we effectively assume that the

time to death is at most 50 days long. The intercept term β should be zero under the model.

However, the fitted model using all data from day 1 to day 116 shows that there is an outlier

on the 9th day, see Fig. 1a. Hence, an indicator variable for the outlier is included in the model:

µt = β0 + β1Ot +

ℓ2∑

j=ℓ1

pjCt−j , (5)

where Ot = 1 for t = 9 and 0 otherwise. The intercept term is estimated to be 0.038

with standard error 0.078, hence insignificant as expected. On the other hand, the coefficient

estimate of the outlier equals 3.76 with standard error 1.96, with p-value equal to 0.058. The

overall death rate of SARS (in Hong Kong) can be estimated by
∑50

j=0
p̂j which equals 16.5%

with standard error 0.0108, so an approximate 95% confidence interval equals (14.4%, 18.6%).

The fitted values appear to track the daily number of deaths relatively well; see Fig. 1a. The

estimates of pj provide an estimate of the probability mass function estimate of the time to

death, which appears to be unimodal, see Fig. 1b. The Pearson residuals versus fitted values

plot (Fig. 1c) shows no strong systematic pattern but the fitted values appear to underfit

the observations, but this could also be related to the skewness of the Poisson distributions.

There seems to be no other outliers, based on the Bonferroni rule. Furthermore, the Pearson

residuals appear to have no serial correlation, as its auto-correlation function (acf, not shown)

is significant only at lag 11, out of the first 20 lags. We conclude that the model defined by

(5) provides a good fit to the data.
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Figure 1 is about here

As the motivation of the transfer function model is to provide a less biased method for

estimating the death rate of a new disease with incomplete data, it is of interest to check the

empirical performance of the transfer function model using rolling data. Specifically, we fitted

the model defined by (5) for days 1 to k, with k = 30, 31, · · · , 116, and computed rolling death

rate estimates. Fig. 1d plots the rolling death rate estimates based on the transfer function

model, and their 95% confidence band, which shows that the death rate estimates rapidly

approach the overall death rate, and indeed are quite close to the target by day 40 or later,

although there are some small oscillations over the period of day 40 to day 60. In comparison,

the simple rolling ratios of cumulative number of deaths over that of confirmed cases converge

monotonically to the overall death rate but they are rather biased downward and only get

close to the target by day 70 or later, see Fig. 1d.

4. CONCLUSION

We have demonstrated the usefulness of the new approach for providing relatively timely and

accurate estimates of the death rate of an emerging disease with censored aggregate data.

Moreover, the method does not assume the functional form of the probability mass function

of time to death due to the disease. It is relatively straightforward to include covariates in

the model. As the probability mass function is non-negative, the coefficients pj must be non-

negative, which was not enforced in the SARS data analysis. An interesting future research

problem concerns how to carry out the estimation of the GLMM defined by (1) subject to the

constraint that pj ≥ 0.
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Figure 1. Hong Kong SARS data. (a) Time Plot of the daily number of deaths; raw data – open circle.

The fitted curve is from the transfer function model using all data from day 1 (March 11, 2003) to day

116. (b) Maximum Likelihood Estimates of pj , j = 0, 1, · · · , 50. (c) The Pearson residuals versus the

fitted values plot of the fitted model. (d) The estimates of the death rates estimated from the model

using rolling data from day 1 to day k, k = 30, 31, · · · , 116. Solid curve – estimates of the death rate

of SARS based on the transfer function model, dotted curves – corresponding 95% confidence limits,

dashed curve – sample proportion of death cases, dotdash curves – corresponding 95% confidence

limits, horizontal line – SARS death rate based on all data. The vertical bars are proportional to

negative daily number of deaths.


